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1. INTRODUCTION

The Enskog equation is a popular model of transport processes in
moderately dense gases.(10) Two alternative approaches based on different
ideas are possible for the mathematical investigation of this equation. An
important specific regularity property of the Enskog equation was observed
by Arkeryd.'" This property gave a global existence results for large initial
data in dimensions one and two. Similar ideas were used in ref. 2 for
getting existence results for the modified Boltzmann equation.

Getting global results for the Enskog equation with large initial data
in the style of Di Perna and Lions or more regular solutions faces an
obstacle, in that classical entropy estimates for the Enskog equation do not

' Department of Mathematics, Chalmers University of Technology. S-412-96 Goteborg,
Sweden.

663

0022-4715/98/0200-0663$ 15.00/0 © 1998 Plenum Publishing Corporation

KEY WORDS: Enskog equation; irregular domains; H-theorem; initial
boundary value problem.

The paper is concerned with the Enskog equation with a constant high density
factor for large init ial data in Z.'(/?"). The initial boundary value problem is
investigated for bounded domains with irregular boundaries. The proof of an
H-theorem for the case of general domains and boundary conditions is given.
The main result guarantees the existence of global solutions of boundary value
problems for large initial data with all r'-moments initially finite and domains
having boundary with finite Hausdorff measure and satisfying a cone condition.
Existence and uniqueness are first proved for the case of bounded velocities. The
solution has finite norm J (sup 0 ^ , s T f( I0 + t, x + vl, v)) ^/\ + v2 dq dv, where
</ = ( / 0 . - v ) is taken on all possible n-dimensional planes Q(i') in R" + l inter-
secting a fixed point and orthogonal to vectors (1, r), re /?".
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exist. The lack of symmetry in the Enskog equation implies that the classi-
cal sign estimate for the entropy production is no longer valid.

Resibois in ref. 15 introduced a new modified //-functional for the
Enskog equation. Estimates for this functional useful for an existence proof
were given in ref. 4.

This modified //-functional and the appropriate entropy estimates
for the case of an infinite space and for a periodical box was an essen-
tial ingredient in the theory of global existence in L',<4) and for the
global existence and uniqueness in the class of functions with the norm
\(sup0iilf.Tf(t,x + v t , v ) ) ( l + v r ) d x d v . ( 3 )

In the present paper we demonstrate an approach for the well posed-
ness of the initial boundary value problems for the Enskog equation in a
bounded domain with irregular boundary and with boundary conditions of
general diffuse reflection form.

In the case of smooth domains useful estimates for the traces of solu-
tions of the kinetic equations which preserve mass can be proved from
some information about the solution inside the domain.'6' In irregular
domains this approach does not work, and more detailed analysis of the
solutions close to the boundary is necessary. A general analysis of such
problems for kinetic equations was given in refs. 12-14. Results from ref. 14
are essentially used in the present paper. We use the representation
/ = // + /* f°r tne solution /, where /,• is a solution of the collisionless
problem for bounded approximate initial data having compact support.
A new estimate is proved for the entropy flux for the collisionless problem
and irregular boundaries. This estimate is important for the limits of the
approximate solutions of the boundary value problems for nonlinear
kinetic equations. Here finiteness of the Hausdorff measure of the bound-
ary, a kind of cone condition, and a regularity property for the reflection
operator on the boundary are assumed.

The non-local nature of the Enskog collision term causes additional
problems for estimates of the entropy production in the case of domains
with nontrivial boundary conditions. One of the results of the present
paper is an H-theorem for the Enskog equation in irregular domains with
the boundary condition of general diffuse reflection form.

The main results of the paper are existence and uniqueness of solu-
tions for the initial boundary value problem of the Enskog equation in
irregular domains and large Ll initial data with all u-moments initially
finite. This is first proved for bounded and then for unbounded velocities.
The solutions have finite norms which are supremum over collisionless tra-
jectories (t,x + vt) from the boundary of the domain of ( t , x ) variables
averaged with weights (1 + vr) over these trajectories and over the ingoing
velocities v. Our analysis is a combination of methods from the papers.'3'I4)
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The boundary conditions introduced here are a straightforward analogy of
the boundary conditions for the Boltzmann equation. The case of the initial
boundary value problems for the Boltzmann equation and for the Enskog
equation in irregular domains with solutions in Ll will be presented in a
forthcoming paper.

2. BASIC EQUATIONS AND THE ENTROPY INEQUALITIES

The representation of the Enskog collision operator in the whole of R"
or the periodic case is as follows:

To simplify notations and to exclude characteristic functions from for-
mulas we assume in the following that all functions of the space variable
are zero outside of Q and that actual domains of integration are delimited
by this requirement.
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where u varies on the hemisphere Jzf+ = (H: \u\ = \,(v — v+)-u^Q),k_,k +

are functions of the local density at the point (x — au) and at the point
(JC + CTW).

The arguments in /', /'_ = /'„,, /, /+ ==/„, are: (x, v'), (x — au, !/„,),
(x, v), (x + au, v^), where

v and V,, are pre-collisional velocities of two molecules, v' and «'„, are their
velocities after collision. In the following we assume the density factors
constant, k_=k+ = \.

When the gas is situated in some domain Q with boundary dQ it is
natural to assume the functions under the integral in (2.1) to be zero when
the space argument is outside Q.

Let 3>+(Q) = {ue£e+:x + uaeQ}, ^_(Q] = {u e ^+ : x - ua e Q}
and %_, x + , and x be the characteristic functions of Jf+(Q), &_(Q),
and Q. Then our assumption implies the following representation for the
collision operator:



where n(x] is a unit normal to dQ, at the point x directed towards the inte-
rior of Q. The operator R is assumed to be linear and of local type. At each
xedQ and at each time / it is defined as an operator, acting on functions
of the argument v alone, with the parametric dependence of x. The case of
irregular boundary dQ will be discussed in the second section.

If there is no emission and absorption of molecules on dQ, then the
operator R satisfies the following condition:
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The Enskog equation depending on the variables (t,x,v)eR+x
Q x R" is

We assume the boundary conditions at the boundary dQ of the domain Q
to be of the same type as for the Boltzmann equation. Let/"1" and/~ be
the distribution functions of molecules, falling on to and reflected by dQ.
Then

The last relation represents a local mass conservation law during reflection
of molecules on dQ.

Usually it is required that a gas with Maxwell distribution

interacting with a wall, having the same temperature 0(x), must be in a
local equilibrium with the wall. This property implies the assumption:

for the operator R. As a consequence, if the wall dQ is motionless and has
a constant temperature, then the Maxwell distribution, with corresponding
constant parameters is an exact stationary solution of the Eq. (2.5) with the
boundary conditions (2.6).



We will prove a modified form of the //-theorem valid for the Enskog
equation in the case of the gas contained in the domain Q with the bound-
ary condition (2.6) satisfying the property (2.7).

The symmetry properties of the Enskog collision operator are valid
also for the form (2.4) of the collision operator in the domain Q and imply
the usual relation:
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which implies mass and energy conservation properties.
Several of the following steps of our proof use arguments from ref. 4

for the case without boundary. They are still valid because one only uses
simple changes of variables like reflection with respect to u and shifts with
respect to x, keeping the estimated integrals invariant independently of the
shape of Q. In contrast to ref. 4 we estimate the entropy production during
some interval of time. This has some advantages in the case of bounded
domains.

Using (2.10) with (p(x, v) = ln(/), the invariance of the integral over
dx under shifts, the relation dvdv^ = dv' dv'^, and the classical inequality
g(log g — log/z) ^ g — h, we get the following estimate for the entropy
production term:

where

Let us introduce the following notations:

The symmetry properties of the terms in F when changing the magni-
tude of the vector u, and the invariance of involved integrals under shifts
for au and — au in the space variables, give that



Several suitable changes of the space variables in the terms under the
last integral sign, imply the following relation:

At this point we use the property (2.7) of the boundary conditions. It
implies that
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where

Let us introduce notations: for the
intersection of the ball with the domain and

for the boundary of Then

Using the mass conservation for the Enskog equation in [0, T] x
we obtain:

where is a mass of the gas in at time /:

Integration by parts over t in (2.17) gives the following result.



Lemma 2.1. If the boundary condition for the Enskog equation
has the mass conservation property (2.7), then the following estimate for
the entropy production term is valid:
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In the case of constant temperature on the boundary, the Darrozes-
Guiraud inequality, Lemma 2.1, estimates for energy and entropy given in
ref. 3 for the case of the Boltzmann equation, and an argument from
ref. 7 imply the following variant of the .//-theorem for the Enskog equation.

Theorem 2.2. Let the temperature on dQ be constant, let dQ have
H" ~' finite Hausdorff measure. If then boundary conditions preserve mass
and the initial data F0 satisfy conditions F0(l + v2+ \nF0)eLl(Q x R"),
then the functional

is a decreasing function of /, and the following estimates for solutions of the
Enskog equation are valid for arbitrary t:

where constants C are dependent on F0 and independent of ;.

The strict proof of the lemma and the theorem in full generality for irre-
gular domains follows from Lemma 3.4, Proposition 5.25 and approximation.



Estimates (2.21)-(2.23) imply that for a fixed large interval of time,
w<2j~l can be chosen such that

where below the constant C(Q, R) will be chosen depending on the solu-
tion of the collisionless problem in the domain Q.

3. FORMULATION OF THE PROBLEM

Next we introduce some geometrical notions, requirements and func-
tional spaces and use them for the formulation of the initial boundary
value problem in the case of irregular domains. Several useful results from
ref. 14 are also included. We refer to ref. 11 for the detailed observation of
the geometric measure theory and to ref. 14 for the discussion of a
generalisation of the boundary value conditions and trace properties for the
kinetic equations in irregular domains.

We assume that Q is a bounded domain in R" with boundary dQ having
finite n — 1-dimensional Hausdorff measure: H"~l(dQ) < o&. iJ* denotes
^-dimensional Lebesgue measure.

The Structure Theorem of Federer(11) implies that in the sense of
Favard measure G"~l, for almost all points x on the boundary dQ, the
tangent plane and the normal n(x) exist in the sense of some approxima-
tion. It means that for almost all directions s in R" the projection of such
subsets BedQ that do not possess approximate tangent plane, on the plane
Q(s), orthogonal to s, has Favard measure zero. Evidently the same
properties are valid for the domain [0, 7"] x Q in Rn+l.

Such geometrical properties of the domain Q are not enough to deter-
mine fluxes for the equations in Q. But given properties determine for
the distribution function f ( t , x, v) correct fluxes
averaged over the velocity v.

Let us introduce some notations used below.
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A measure associated below with D and D, is the Lebesgue
measure

and
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and

• da = do(\) = dtdG" l \ v - n \ d v is a measure, associated with E±.
Below by statements valid almost everywhere on Z±, we mean a-almost
everywhere validity.

For a vector be the /^"-dimensional plane in R"+l

orthogonal to the vector (1, v).intersecting the point and

• For a point (t, y) eR"+l let l,(y, v) be a straight line in R" + ] which
intersects the point (t, y) and parallel to the vector (\,v)eRn + l.

• Prv is an orthogonal projection from R" + l to Q,(v) in the direction
parallel to (1, v).

• path

The following lemmas are proved in ref. 14 and give useful tools for
the analysis of kinetic equations in domains with irregular boundary.

Lemma 3.1. For almost all veR" and one of the following two
conditions:

(i) for ^"-almost all ( t , y ) e Q , ( v ) ,

( i i ) for S'xG'J"'-almost all (t', x)e[0, T] xdQ with ( t , y ) =
Prv( t', x), the following statement is valid:

pathXj, v) consists of a finite set of segments on the line l,(y, v) in R" + 1:

Lemma 3.2. If feLl(\_0, T] xQxR"), then for almost all veR"
and fi"-almost all (t, j)e Q,(v), it follows that/|path((j, „, is summable and

where [a, b] with a, b e Rk means a segment in Rk with end points a and b.



In the theory of kinetic equations, fluxes used in estimates for non
stationary problems are integrals over Q,(v)xR", i.e. they are fluxes pro-
jected in velocity directions and averaged both over the time interval, over
the projection of the boundary and over the velocity.

As a consequence of Lemmas 3.1-3.3 the subsets of the boundary
having zero Favard measure are negligible for kinetic boundary value
problems. On the rest of the boundary G"~l = H"~l, an approximate
tangent plane*U) is defined and therefore kinetic boundary conditions are
defined //"^'-almost everywhere.

The integration by parts along the segments of path,(jF, v) valid by
Lemma 3.3 gives a useful substitution of the classical Gauss-Green formula
which is not valid generally in the present setup.

Let us introduce a usual parametrisation of the distribution function

Lemma 3.3.
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The analogous relation is valid for integrals off(b',(y, v), v),f (t, x, v)
and/(T, x, v).

The following lemma is proved in ref. 14 and is analogous to a result
in ref. 17. The proof in the case of irregular boundaries is analogous to the
one in ref. 17, but is based on Lemmas 3.1-3.3 instead of the classical
Gauss-Green formula.

Lemma 3.4. Suppose that and

1. Then F has unique traces F± <r-almost everywhere on 27*.

2. If F+ belongs to Ll(Z+) and F \ 0 ) e L 1 ( V ) , then F~ belongs to
L\Z~) and



We use for the Enskog equation a functional space based on the
parametrisation of D by the segments of path,(.v, v). Let us introduce a
norm calculating the supremum over each segment [«',(y, v), b\(y, i > ) ] for
a.a ( t , y ) e Q , ( v ) and averaging these suprema by the natural surface
measure on the boundary of D over their "ingoing" points (a',(y,v),v).
Part of the ingoing points lie on {0} x F—the bottom surface of D, and the
remainder on its lateral surface Z+. The idea of norms calculating the
average of suprema of the distribution function over collisionless paths was
introduced into nonlinear kinetic theory by Toscani in a discrete velocity
setting.'16)

Let for the function g( r), r 6 D
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for -t + (ib)^t^t (rfc) and zero otherwise. /*(/, rfc) is a shift of the
distribution function after the time tb along the collisionless paths of
molecules in ( t , x ) — R" + l space.

For functions/constant along the collisionless trajectories and determined
by the initial data/0 and the ingoing values/"1" we use the notation:

Let Lr T be the space of measurable functions on [0, T] x V with
norm

where r0e {0} x V in the first term and r+ eZ+ in the second.
It is easy to see that the function G r ( r ) is constant on collisionless

trajectories in D and

Lemma 3.4 implies that

where and



Let us denote by B±f \.\\Q trace of the function / eLr T on Z±, then

and fi0 = 0 otherwise.
Let us introduce the following splitting of the distribution function:

f = fi + fe, where/, is a solution of the collisionless problem with initial
datafi0.
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It follows from the fact that the supremum over the segments
\_a\(y, v), b\(y, u)] of the trajectories estimates boundary values.

Denote by J t ( S ) the set of all measurable subsets Me: V such that for
almost all v e R" the set M0 of those x for which (x,v)eM has Q" measure
less than 8. On such sets the integral form of the Enskog equation has
some additional averaging properties. Let

Denote by J/b(S) the set of all measurable subsets Mbc£ + , such that
for almost all v e R" the set Mv of those ( t b , xb) for which ( t b , xb, v) e Mb,
has H1 x G\_l measure less then 8. Let

For functions defined both on {0} x V and £+ we introduce

A splitting of distribution functions into parts with high and bounded
velocities is used below for the construction of the approximate solutions.

Let



The argumentation in the present paper generally follows the method
from ref. 3. For the fixed large time interval [0, 7",] we choose w<2J~l

large enough to guarantee such estimates of the initial data/e0 and ingoing
data / + that they are preserved for /e [0 , 7\]. Therefore we concentrate
mainly on the developments necessary for the case of the initial boundary
value problem and on the methods essential in the case of irregular
domains.

4. BOUNDARY CONDITIONS AND A PRIORI ESTIMATES

The correlation between/, and/, in Eq. (3.13) needs relevant estimates
for the part of /,+ with large velocities and for the unbounded part of/,+.

In the case of the unbounded space and in the periodic case/, is trivial.
It is simply a shift of the initial data (./,0)# bounded, and having compact
support in the v variable.

For the case of the Maxwell reflection operator and convex domains,
properties of collisionless solutions which we are interested in were proved
in ref. 6. Here we present conditions which guarantee the same behaviour
of these solutions in the case of irregular domains and general requirements
for the operator R.

Condition 4.1. Boundary conditions are supposed to be of the
following type,
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The relevant integral form of the equation for ff is:

and are defined at G" '-almost all points x on dQ. We assume that
R(x, v' -+ v) is non-negative and
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The flux of energy and the arbitrary amount of the higher moments for
molecules reflected from the boundary are uniformly estimated by the flux
of mass of outgoing molecules. The following requirement is essential in the
case of irregular geometry of the boundary.

Condition 4.2. There is such C>0 independent of points on dQ

where M(x) is a Maxwell distribution associated with the point x e dQ. The
temperature 0(x) is uniformly bounded on dQ from below and from above.

The following property of the operator R follows from (4.4). Let a > 0,
°H is an arbitrary cone in n • v > 0 with vertex at zero and body angle larger
than a. Then for some A0 > 0 uniformly relatively to x, v' and <&

This property means that a molecule which falls on the surface has a
strictly positive probability to be reflected to any body angle larger than a
in the half-space.

One type of entropy estimates in a bounded domain can be proved if
some additional regularity of the reflecting operator R at the boundary is
assumed. In the case of regular boundary this requirement was introduced
in ref. 5.

Condition 4.3. There is a constant C4<oo and <x0e[0, 1) such
that

Conditions 4.1-4.3 are valid for regular models of reflection and also
for Maxwellian diffuse reflection.<5)

Next we introduce a geometric assumption which is used for the
specific estimates of the solutions in irregular domains.(14)

where and the function />0 is such that all rele-
vant integrals exist.



Condition 4.4 (Cone condition). There exist S0>0 and < x > 0 such
that for G"~ '-almost all points xed£2 there exists a cone Cone inside Q
with vertex at x, body angle larger than a, and length larger than <50.

Notice that only the estimates of its body angle and length are impor-
tant. By a cone we mean an arbitrary set consisting of segments with a
common end point.

Lemma 4.1. Let Conditions 4.1-4.4 be satisfied. Let fi0(\ +y2 +
ln/ /0)eL0(F). Then the solution fteL0,T of the problem (3.10)-(3.12)
exists for arbitrary T>0, is unique, conserves mass and has the following
properties. Integrals

822/90/3-4-11
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are uniformly bounded with respect to / in R+. This also holds for the
mass, energy and entropy flows averaged over the arbitrary finite interval
of time:

The estimates (4.8) are dependent of At, but independent of t.

Proof. The equation for//" on Z+ is

Let A = { ( t , x , v ) = (tb + T,xb + trt,v): (tb,xb)e[t,t + 4t]xdQ, ve
Cone, \v\ <y}, where Cone is the cone from Condition 4.4 and tb + T^
t + At.

Let us denote the set of "ingoing" points of A by A + e £+ and the set
of "outgoing" points of A by A ye {t + At] x F. Then

Conditions 4.1 and 4.2 imply that for enough large y the following estimate
is valid:



The estimate (4.11) and the construction of the set A imply that for
the time interval At<dQ/y, equation for ff can be solved in L0(Z+)
by a contraction argument, and therefore the solution of the problem
(3.10)-(3.12) exists and is unique. For the arbitrary interval of time the
existence follows by repeating the contraction argument, from the mass
conservation law on the boundary and Lemma 3.4.

Next we will prove the estimate for the entropy flux on the boundary.
Lemma 4.1 and Lemma 5.3 from ref. 14 imply that
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If / + < q then

If/,:*" >q then the estimate (4.12) implies

The standard estimate of / ln_/ , the estimate (4.13) for fluxes of energy
and mass, and the boundedness of q In _ q imply

The estimate (4.11) implies:

Condition 4.4 implies that



5. EXISTENCE AND UNIQUENESS IN THE CASE OF
BOUNDED VELOCITIES

This section contains the analysis of the Enskog equation with bounded
velocities. It uses a modified collision operator and the appropriate integral
operator in the integral form of the equation. Let

Initial Boundary Value Problems for Enskog Equation 679

Using the conservation of f, along the collisionless trajectories and
setting At = 80/y, we get:

Estimates (4.14)-(4.17) imply the statement of the lemma for At = 80jy. The
result for arbitrary finite At follows by the repetition of the proof for the
sequence of time intervals.

A similar proof gives the existence result and the useful estimates for
the solutions of the following boundary value problem:

with the function v^O, veL\oc(D).

Lemma 4.2. Let f0eLr(V), geLr T and Conditions 4.1-4.5 be
satisfied. Then the problem (4.18)-(4.20) has a unique solution in Lr T and
the following estimates are valid:

where constants C, C(a.,60,y) depend on the geometrical conditions,
on r, and on the properties of the operator R. If the temperature on the
boundary is constant, they are independent on t.
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For shorter notations, in the following we omit the domain of integration
Jz?+ x R" in the collision integrals over dv^ du.

Integrals of the following type are important for the estimates of
operators in the integral form of the Enskog equation. We notice that when
the space argument is outside of the domain Q, functions are assumed be
equal to zero.

Let the function F be such that (d/dt) F+ v VXF= 0,

for 6j=T2J+*a2n, T<At with At = S0/y, chosen such as in the proof of
Lemma 4.1.

Proof. The estimate follows from the following observation. The change
of variables a2((v — !>„,)• M)+ dsdu-+ dx, where x = xb + s(v — v^) + au, has
Jacobian equal to 1. T\v — v^ is a length of a cylinder including the

680

where W} =1 if v2 + v\ < 22J, and W} = 0 otherwise. The appropriate
integral form of the problem is:

Lemma 5.1:
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domain of integration by x, a2n is the area of its bottom. The presence of
Wj under the integral implies that |i> —uj ^2w = 2j+l in the domain of
integration. Then we notice that the integral over the set M in {/} xQ by
dx can be transformed to the integral over the projection of the set M in the
direction of the vector (-1, -uj in R" + 1 to ([0, T~\ xdQ) u({0}) xQ)
with the appropriate measure at each component.

Lemma 5.2. Let

where

Then for T<At with At = d0/y

Proof. Remark that ff (s, tb, xb + s(v — v+) + au, v i f ) = f i ( t b + s, x +
sv + au, v#). We here discuss the second term, the arguments for the first
term being analogous. First the function with v velocity argument in the
collision term is estimated by its supremum over the collisionless trajec-
tories and the integral over v gives the || II z.^*) norm. Then the integral
over duds is estimated by the integral over [0, T~\ xdQ^j {0} xQ as in
Lemma 5.1:

The same estimate as in (5.8) bounds also the trace
ds of the operator ds on



Theorem 5.5. Suppose F0(l + u 2 ) e L 0
l ~ , F0 lnF0£L0 and Condi-

tions 4.1-4.4 be satisfied.
Then locally in time the problem (5.1)-(5.3) has a unique solution

fJeL0(V) that conserves mass.

Proof. With /o = 0 as the initial approximation, define
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Proposition 5.3:

Lemma 5.4. I f g e L + r a n d T>0, then

Proof. The proof follows from the change of variables a2((v — v^)-
u)) + du ds -> dy with y = x + s(v — v^)-\-au and the estimates:
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This is equivalent to the equations

with

We split the successive approximations /„ of solution into the sum of
the solution /, of the free molecular problem with finite initial data fi0

having compact support and the deviation <,/„ = /„—/,. Therefore efn are
successive approximations tofe. The equations for efn have the form:

where efn + i(rb}=fe0 = F0~fi0 for rA<={0} x V and e/n + i(rA) = e/B++, for
vbe£+. The terms J^ •••1/8 represent the terms in the itegral operators in
given order.

Inserting the Eq. (5.17) into the boundary conditions (5.18) we get the
equation for/M++1 with the right hand side dependent on ef0 and on the
collision integral:

where (ef£+i)* denotes a continuation of ef^+i constant along colli-
sionless trajectories. The analysis in Lemma 4.1 shows that for T<S0/y the
operator ef++l - » R B ~ ( e f + + l ) # in this equation is contracting in L0(L + ).
Let us denote by ss? the bounded operator solving the Eq. (5.19) in
L0(Z + ). The right hand side of this equation is a sum of two terms:
a bounded operator acting from L0( F) to L0(L+) and a bounded operator
acting from LOT to L0(Z + ). Therefore equations (5.17) and (5.18) are
equivalent to

for



The estimates of the mass, energy and entropy fluxes on Z+ for /,• in
Section 3 imply that/* can be splitted into two parts: one part bounded
by w and having compact support \v\2^w2, and a singular part/,J such
that by the choice of w its norm 11/^11^+ in L0(Z + ) can be made
arbitrarily small.

We remark that /b (p, fis) ^ |[/ + j|r+. Therefore, we can choose w and
T< At such that:
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Estimates (5.8), (5.10) imply:

for &(x,v)^w, \v\^w. With the constant C(Q, R) in (2.24) taken as
C(Q, R) = (l + H-s/IUO"1 the last estimates imply that IL/n + i ||0, r< I6"1-

Taking a difference between approximations for fe of orders n + 1 and
m+ 1, we get:



Therefore, {efn} J is a Cauchy sequence in the || ||0 r norm. The limit
f{ gives a unique nonnegative solution fj = fi + fj

e for the Enskog equation
with bounded velocities. The solution is stable with respect to the perturba-
tion of the initial data in L0( V).

Next we formulate a regularity result useful for a strict proof of the
//-theorem for the Enskog equation.

Proposition 5.6. Suppose the function F0eL0(V) is such that
v VxF0eL0( V) and QJ(F0, F0)eL0( V). Then the solution / given by
Theorem 5.5 exists on a small time interval [0, T], and (d/dt) feL0 T and
vVxfeL0iT.

The proposition follows immediately from Theorem 5.5 because the
assumed conditions imply that/, = df/dt satisfies the following equations:

6. ESTIMATES FOR HIGH MOMENTS

The following lemmas contain estimates for various terms of the
integral form of the initial boundary value problem for the Enskog equa-
tion analogous to estimates in ref. 3 for the Cauchy problem. The proofs
in ref. 3 are based on a delicate splitting of the v x v+ and v' x v'^ spaces R2"
with different types of estimates in the subdomains of this splitting for the
velocity variables. The realisation of this idea is independent of the domain
Q of space variables. The generalisation to the initial boundary value
problem with the norms || ||r T and the functionals /T(n, •} and /6(^, •)
introduced in the present paper follows by a combination of arguments
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Now to get a strict proof of the //-theorem and Lemma 2.1 at first for the
Enskog equation with bounded velocities we approximate the arbitrary
initial data in L 0 ( V ) by the smooth function, satisfying assumptions of the
proposition and estimated from below by some Maxwellian. For such
initial data the proofs of the //-theorem and Lemma 2.1 for the Enskog
equation with bounded velocities are valid in a strict sense. The result for
the general initial data follows by approximation and the continuous
dependence of solutions on initial data.
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from ref. 3 and from the proofs of Lemmas 5.2-5.4. We give in the present
section only a proof for Lemma 6.2. The other estimates are proved in a
similar way.

We notice that /(^, F) = /T(n, F) + fb(n, F).

Lemma 6.1. Suppose that w2~k^S<Ktj« 1, and that geL+T.
Then the following estimate holds:

Here C depends on w but not on /0, k, or T.

Lemma 6.2.

Proof. By the symmetry of the estimates under the change of
v' <-> !/„., we treat only the term with/}#'„,. We remark that dv dv^ = dv' dv'^
and split the domain of integration into two parts, \v'^ ^2k + 2 and
»'J>2* + 2.

The first part of the integral is estimated by

We use the change of variables cr2((v — v . l f ) - u ) + d s d u - > d x , in a small
cylindrical neighbourhood in Q, where x = xb + s(v — v+) + au. The volume
of such a domain is estimated by T2k + 3na2 because



Lemma 6.4. Suppose g, p e Lr T and 0 ̂  S « 1. Then the following
estimates hold:
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where

and the following estimate holds:for

Lemma 6.3. For g,peL^T, 0<<5« 1, and

The last inequality together with arguments from the proof of Lemma 5.2
imply the estimate for the first integral.

Substituting \v\M by \v^,\M/2 into the second integral analogously as
in the proof of Lemma 5.4 we get the bound:

The energy conservation law implies the following sequence of estimates:
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7. GLOBAL EXISTENCE AND UNIQUENESS IN THE CASE OF
UNBOUNDED VELOCITIES

In this section the solution of the full Enskog equation is obtained as
a strong limit of the solution/7 from Theorem 5.5. The main result of the
present paper is the following.

Theorem 7.1. Suppose that F0^0 is such that F0\nF0<=L0(V),
F0eL,.(V) for all r^O, Conditions 4.1-4.4 are satisfied, and the tem-
perature on the boundary is constant.

Then the Enskog equation has a unique positive solution / with
l l / l l r < r < oo for r, T>0 and satisfying (2.21), (2.22), (2.23).

Proof. The proof of the theorem begins from the solution of the
equation for the ingoing distribution function / +.

Let [0, 7\] be a large time interval and choose w so that (2.24) holds.
Set
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The function f{ = fj — /• satisfies

with for and for
and



Lemma 4.2 implies that Eq. (7.4) forfj
e
+ has a unique solution in Lr(Z

+).
It can be solved first in L0(L

+) by a contraction argument on the interval
of time T^Sv/y. For the right hand side term g belonging to Lr(E+],
Condition 4.1 implies that ||/>+||£+ < C ||/MLo(^)+ \\g\\L^}.

Let us denote by s/L a bounded operator solving the Eq. (7.4) in
Lr(Z

 + ). Then for rAer+ (7.2) is equivalent to
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f{+ satisfies the equation

By using Condition 4.1 and the fact that norms \\-rfL\\Lr(z+) are bounded for
all r, the scheme of the proof from ref. 3 can be adapted to this initial
boundary value problem.

The following lemmas generalise analogous results from ref. 3 to the
case of bounded domains.

Lemma 7.2. For any /eL 2 T with

and 0 ̂  r ̂  1 the following estimate holds:

The following statement gives the uniform estimate for the first
moment of the approximate solution fj and follows from Lemma 7.2 and
from the energy and the entropy flux estimates of Lemma 4.1.
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Proposition 7.3. Tin Lemma 7.2 can be chosen such that

and the solution/7 of Theorem 5.5 exists on [0, T~\ for every/, and

The estimate is valid also for/0 = g such that (2.21 )-(2.24) are satisfied by
f ( - , t ) = g , t<Ti, with C(Q,R) = (l + \\,^L\\Lt(£+})-

1.

Lemma 7.4. Given 6, there are T<At and /u>Q depending on w
and fa but independent on / such that

where

Proof. It is clear that the lemma holds, if F{ T, is replaced by J1 on
{0} x V, and by # + / + on Z + . Then F{>T.^3l + fZ+FJ

r on Z + , and
F{ T, ^3S + FJ

T, on {0} x V. Therefore it is enough to proof the estimate for
/(H, F'T.). Let

Excluding negative terms from the Eqs. (7.2), (7.5), and using the
monotonicity of s/L we get:

The terms independent of j satisfy the lemma. Also for terms with ^ and
y^ the bound follows from arguments as in the proof of Lemma 7.2. Let
fi = 2k + 2na2f.
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For

For r e 0 x V, the following estimate follows:

Integrating inequalities (7.12) and (7.13) over Me V and Mbe£ + , taking
the supreme over M e Jl(^) and Mb e ^h(/u), and moving the terms with
\F{ T,\ to the left-hand side, we get the bound which implies the statement
of the lemma:

The following lemma is a consequence of results from Section 6, Lemmas
7.2, 7.4, and Proposition 7.3.



For the case of the whole space it is proved in ref. 3 that the estimates
having the structure as in Lemmas 7.2-7.5 imply useful bounds for fj

uniform with respect to/ In the case of the initial boundary value problem
the analogous result follows from the regularity property (4.1) of the reflec-
tion operator R and the boundedness of ||.5/z.llz.,(.>:+)- The additional
averaging given by the operator R in the term
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Lemma 7.5. LetfeLrT. Then the following estimate is valid.

with dependent only on iv.

from the integral form of the Enskog Eq. (7.5) and the argumentation
analogous to the proof of Lemma 7.2 imply that the || ||r>r norm of this
term is bounded by the value

This estimate and Lemmas 7.2-7.5 imply the following proposition.

Proposition 7.6 (Uniform bound). The values of constants q,
r = r0, 8, k, s from Lemma 7.5 and T from Lemma 7.5 can be chosen such
that for T^T with T and r0 dependent only on w and independent on j

For r>r0 there is Tr depending only on w and r such that for Tr < Tr

These estimates are valid also for F0 = g when g = f ( t , - } , 0 ^ / ^ 7\
satisfies (2.21 H2.24).



Considerations analogous to Lemma 7.5 give that the last term nonlinear
with respect to fe can be bounded by

822/90/3-4-12
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We will prove that the sequence {fje} has the Cauchy property in
Lr-\,r f°r some 7X Tr with r = r0. Fory, > j consider

Lemma 7.5 implies that the term \\AjfJj -A'jfje\r_ltr is bounded by

where n = T'2n£~2a. The factor 2r/2 + 2£2(| | /^| | r_1>r , + ||/£ | | r_,,r.) can be
made suitably small by a suitable choice of e.

Lemma 7.2 implies that for enough small T' = T>Q, depending only
on w, the factor

can be maid suitably small uniformly with respect to fj with initial value
f(T),jf*-A'jfJt?\\r_l, OSC2X2Vjf*-A'jfJt?\\r_l, Therefore \\A'jf*-A'jfJt?\\r_l,T.^,\f*-fJ\\r_t.T./2.

The term sup,|>y U'jJ* -A'J1} ||r_,,-r-p^ 0. The proof is
analogous to one in ref. 3 and uses estimates for the integral form of the



Enskog equation and a splitting of velocity space for large and bounded
velocities.

An estimate analogous to (7.18) gives that the last term in (7.21) can
be estimated by \\f{[— f{\\r-\, r multiplied by a number proportional to
7" = f which can be chosen suitably small. It implies that {f{} is Cauchy
in the || | | r _i ,y norm, for all t^f the sequence {fj

e(t)} is Cauchy in the
|| ||r norm, and / = /,- + /,, is a solution of the Enskog equation in integral
form with the boundary conditions. We remark that the length of the
interval is dependent on r. The solution on the large interval [0, Tl ]
is constructed by induction using the apriori estimates (2.21)-(2.24) and
Proposition 7.6.
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